Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа села Орлов-Гай Ершовского района Саратовской области»

РАССМОТРЕНО

СОГЛАСОВАНО

УТВЕРЖДЕНО

See

Руководитель МО

августа 2023г.

ЗДУВР

Директор

Останкова О.А. Протокол №1 от «28»

Бугрова Н.А. 6т/«28» августа 2023г. Приказ №167

Леонова С.В. от «28» августа 2023г.

Рабочая программа элективного курса « Избранные вопросы математики» для 10-11 классов.

> Рассмотрено на заседании педагогического совета протокол № 1 от « $_28_$ » августа 2023г.

Программа элективного курса «Избранные вопросы математики»

для образовательных организаций, реализующих программы среднего общего образования 10-11 классов разработана сотрудниками кафедры математического образования ГАУ ДПО «СОИРО» и группой учителей математики образовательных организаций Саратовской области соответствии со следующими нормативно-правовыми документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- Федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 (с изменениями и дополнениями);
- Порядок организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования, утвержденным приказом Минобрнауки России от 30.08.2013 года № 1015 (с изменениями и дополнениями);
- СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» (далее СанПиН), утвержденным постановлением Главного государственного санитарного врача РФ от 29.12.2010 № 189 (с изменениями и дополнениями.)

Содержание элективного курса «Избранные вопросы математики» представлено современной модульной системой обучения, которая создается для наиболее благоприятных условий развития личности, путем обеспечения гибкости содержания обучения, приспособления киндивидуальным потребностям обучающихся и уровню их подготовки. Модули: «Преобразование числовых и буквенных выражений», «Показательные и логарифмические неравенства», «Применение теории объёмов к решению задач», включённые в данную программу, представляют собой относительно самостоятельные единицы, которые можно сочетать в любых комбинациях и реализовывать в любом хронологическом порядке, адаптируя под намеченные цели, задачи и условия организации образовательного процесса.

Программа элективного курса «Избранные вопросы математики» рассчитана на 1 час в неделю (34 часа в год в 10 и 11 классах), всего 68 часов.

Основной целью изучения элективного курса«Избранныевопросы математики» является использование в повседневной жизни и обеспечение возможности успешного продолжения образования по специальностям, связанным с прикладным использованием математики.

Основные задачи:

пробуждение и развитие устойчивого интереса к математике, повышение математической культуры учащихся;

предоставление каждому обучающемуся возможности достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе;

подготовка обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования.

Планируемые результаты освоения элективного курса.

Программа предполагает достижение выпускниками старшей школы следующих личностных, метапредметных и предметных результатов.

В личностных результатах сформированность:

- целостного мировоззрения, соответствующего современному уровню развития науки математики и общественной практики ее применения;
- основ саморазвития и самовоспитания в соответствии с общечеловечески-ми ценностями и идеалами гражданского общества; готовности и способности к самостоятельной, творческой и ответственной деятельности с применением методов математики;
- готовности и способности к образованию, в том числе самообразованию, на протяжении всей жизни; сознательного отношения к непрерывному образованию как условию успешной профессиональной и общественной деятельности на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованности
- в приобретении и расширении математических знаний и способов действий,
- осознанности в построении индивидуальной образовательной траектории;
- осознанного выбора будущей профессии, ориентированной на применение математических методов и возможностей реализации собственных жизненных планов; отношения к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, работа над исследовательским проектом и др.).

Метапредметные результаты

- умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
- умения находить необходимую информацию, критически оценивать и интерпретировать информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в различной форме (словесной, табличной, графической, символической), обрабатывать, хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами;
- навыков осуществления познавательной, учебно-исследовательской
- и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- владения навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
- умения продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владения языковыми средствами умения ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства.

В предметных результатах сформированность:

- представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
- представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы
- и явления; понимание возможности аксиоматического построения математических теорий;
- умений применения методов доказательств и алгоритмов решения; умения их применять, проводить доказательные рассуждения в ходе решения задач;

- стандартных приемов решения рациональных и иррациональных, показательных, логарифмических, степенных, тригонометрических уравнений и неравенств, их систем;
- умений обосновывать необходимость расширения числовых множеств (целые, рациональные, действительные, комплексные числа) в связи с развитием алгебры (решение уравнений, основная теорема алгебры);

Выпускник научится:

- выполнять нестандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.
- свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, в том числе некоторые дробнорациональные и иррациональные;
- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
- использовать метод интервалов для решения неравенств, в том числе дробнорациональных и включающих в себя иррациональные выражения;
- владеть разными методами доказательства неравенств;
- решать разные задачи повышенной трудности;
- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения при решении задачи:
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.
- владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;

Выпускник получит возможность научиться:

- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;
- применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;
- применять при решении задачмногочлены с действительными и целыми коэффициентами;
- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
- выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения;
- переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;

- применять при решении задач и доказательстве теорем векторный метод и метод координат;
- иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;
- применять теоремы об отношениях объемов при решении задач; применять формулы объемов при решении сложных задач.

Содержание элективного курса « Избранные вопросы математики ».

Модуль 1. Преобразование числовых и буквенных выражений.

Числовые выражения.

Числовой ряд. Основная теорема арифметики. НОД и НОК. Признаки делимости. Метод математической индукции. Рациональные числа. Формулы сокращенного умножения. Десятичные периодические дроби. Иррациональные числа. Свойства степени. Свойства арифметического корня n-й степени.

Преобразование выражений, содержащих числовые значения некоторых функций.

Логарифмическая функция и ее свойства. Тригонометрические функции.

Обратные тригонометрические функции.

Преобразования комплексных чисел.

Понятие комплексного числа. Действия с комплекснымичислами.

Тригонометрическая и показательная формы комплексного числа.

Сравнение числовых выражений.

Числовые неравенства на множестве действительных чисел. Свойства числовых неравенств. Опорные неравенства. Методы доказательства числовых неравенств.

Преобразование буквенных выражений.

Правила преобразования выражений с переменными: многочленов; алгебраических дробей; иррациональных выражений; тригонометрических и других выражений. Доказательства тождеств и неравенств. Упрощение выражений.

Практикум по решению задач.

Решение задач различного уровня сложности. Самостоятельная работа.

Решение задач ЕГЭ по преобразованию числовых и буквенных выражений.

Примеры решения задач ЕГЭ прошлых лет. Подготовка к ЕГЭ

Итоговое занятие.

Электронное тестирование.

Модуль 2. Показательные и логарифмические неравенства

Показательная функция и ее свойства.

Показательная функция: график и свойства функции.

Основные типы и методы решения показательных неравенств.

Показательные неравенства: однородные показательные неравенства; неравенства, сводящиеся к квадратным или к рациональным неравенствам высших степеней; нестандартные показательные неравенства. Неравенства, решаемые графическим методом.

Логарифмическая функция и ее свойства.

Логарифмическая функция: график и свойства функции. Связь показательной и логарифмической функций.

Основные типы и методы решения логарифмических неравенст.

Особенности решения логарифмических неравенств. Замена переменной

в логарифмических неравенствах. Решение логарифмических неравенств с переменным основанием. Метод рационализации. Решение логарифмических неравенств повышенного уровня сложности

Использование свойств функций при решении показательных и логарифмических неравенств.

Использование свойств монотонности и непрерывности функций, свойств четности и нечетности, свойств ограниченности функций. Метод оценки левой и правой части неравенства.

Комбинированные неравенства и системы неравенств.

Решение комбинированных неравенств с использованием различных

методов. Решение систем неравенств, содержащих логарифмическую и (или) показательную функцию и их комбинации с рациональными, дробно-рациональными и другими функциями.

Итоговое занятие.

Зачет, включающий тестовую часть и решение индивидуальных заданий.

Модуль 3. Применение теории объемов к решению задач.

История изучения объемов тел. Метод неделимых.

Первые сведения об объемах тел в древности. Идеи Архимеда. Приемы вычисления площадей и объемов фигур. Метод неделимых.

Сущность метода площадей и метода объемов.

Сущность метода площадей и метода объемов. Понятие объема. Свойства объема. Кавальери - яркий представитель метода неделимых. Принцип Кавальери – утверждение, позволяющее выводить формулы объемов тел без использования интеграла или предельного перехода.

Объем прямоугольного параллелепипеда и объем пирамиды. Принципподобия.

Вывод формул объема прямоугольного параллелепипеда и объема пирамиды с помощью принципа Кавальери. Принцип подобия.

Вывод некоторых формул объемов многогранников.

Основные формулы объемов многогранников: отношение объемов

треугольных пирамид; объем описанного многогранника; вычисление объема тетраэдра через площади двух граней, двугранный угол и ребро; вычисление объема тетраэдра через два противоположных ребра, расстояние и угол между ними; вычисление объема треугольной призмы через площадь одной из боковых граней и расстояние от противоположного ребра до этой грани.

Зачет по теории объемов.

Урок - зачет по теоретическим вопросам.

Примеры задач на применение метода объемов.

Рассмотрение примеров задач на применение изученных теорем.

Практикум по решению задач.

Применение теории объемов. Решение задач различнойсложности.

Групповая форма работы. Самостоятельная работа.

Применение теории объемов к решению задач ЕГЭ по математике.

Примеры стереометрических задач ЕГЭ прошлых лет, решение задач повышенной сложности (часть С). Подготовка к ЕГЭ.

Итоговое занятие.

Защита творческих работ групп или индивидуальных работ (защита решений задач). Сравнение различных способов решения задачи.

Тематическое планирование элективного курса 10 класса.

№ п/п	Тема	Кол-во часов
	Модуль 1. Преобразование числовых и буквенных выражений	neoz
1.	Числовые выражения	6
2.	Преобразование выражений, содержащих числовые значения некоторых функций	4
3.	Преобразования комплексных чисел	4
4.	Сравнение числовых выражений	4
5.	Преобразование буквенных выражений	6
6.	Практикум по решению задач	4
7.	Решение задач ЕГЭ по преобразованию числовых и буквенных выражений.	4
8.	Электронное тестирование.	2
	Итого	34

Тематическое планирование элективного курса 11 класса.

№	Тема	Количество			
п/п		часов			
M	Модуль 3. Показательные и логарифмические неравенства. (17 часов)				
1	Показательная функция и ее свойства.	1			
2	Основные типы и методы решения показательных неравенств.	2			
3	Логарифмическая функция и ее свойства	1			
4	Основные типы и методы решения логарифмических неравенств	4			
5	Использование свойств функций при решении. показательных и логарифмических неравенств.	4			
6	Комбинированные неравенства и системы неравенств.	4			
7	Итоговое занятие. Зачёт.	1			
	Модуль 4. Применение теории объемов к решению задач	. (17 часов)			
8	История изучения объемов тел. Метод неделимых.	1			
9	Сущность метода площадей и метода объемов.	1			
10	Объем прямоугольного параллелепипеда и объем пирамиды. Принцип подобия.	1			
11	Вывод некоторых формул объемов многогранников.	2			
12	Зачет по теории объемов.	1			
13	Примеры задач на применение метода объемов.	2			
14	Практикум по решению задач.	3			
15	Применение теории объемовкрешении задач ЕГЭ по математике	4			
16	Итоговое занятие. Защита проектов.	2			
	Итого.	34			

Календарно-тематическое планирование элективного курса (10 класс).

№ п/п	Тема	Кол-	Дата	
		во	По	Факт.
		часов.	Плану.	
1	Числовой ряд. Основная теорема арифметики.	1	01.09	
2	НОД и НОК. Признаки делимости.	1	08.09	
3	Метод математической индукции.	1	15.09	
4	Рациональные числа Формулы сокращенного умножения.	1	22.09	
5	Десятичные периодические дроби. Иррациональные числа	1	29.09	
6	Свойства степени. Свойства арифметического корня п-й степени.	1	06.10	
7	Преобразование числовых выражений.	1	13.10	
8	Преобразование буквенных выражений.	1	20.10	
9	Логарифмическая функция и ее свойства	1	10.11	
10	Тригонометрические функции. Обратные тригонометрические функции.	1	17.11	
11	Понятие комплексного числа.	1	24.11	
12	Действия с комплексными числами.	1	01.12	
13	Тригонометрическая форма комплексного числа.	1	08.12	
14	Показательная форма комплексного числа.	1	15.12	
15	Числовые неравенства на множестве действительных чисел.	1	22.12	
16	Свойства числовых неравенств.	1	12.01	
17	Опорные неравенства.	1	19.01	
18	Методы доказательства числовых неравенств.	1	26.01	
19	Правила преобразования выражений с переменными: многочленов.	1	02.02	
20	Правила преобразования выражений с переменными: алгебраических дробей.	1	09.02	
21	Правила преобразования выражений с переменными: иррациональных выражений.	1	16.02	
22	Правила преобразования выражений с переменными: тригонометрических.	1	01.03	
23	Доказательства тождеств и неравенств	1	15.03	
24	Упрощение выражений.	1	22.03	
25	Практикум по решению задач. Решение задач различного уровня сложности.	1	05.04	
26	Решение задач различного уровня сложности.	1	12.04	
27	Решение задач.	1	1	
28	Самостоятельная работа.	1	19.04	
29	Решение задач ЕГЭ по преобразованию числовых выражений.	1	26.04	
30	Решение задач ЕГЭ по преобразованию числовых выражений	1	03.05	
31	Решение задач ЕГЭ по преобразованию числовых выражений	1		
32	Примеры решения задач ЕГЭ прошлых лет	1	17.05	

33- 34	Итоговое электронное тестирование	2	24.05	
	Итого.	34	31	

Календарно-тематическое планирование элективного курса (11 класс).

№ п/п	Тема.	Количе ство часов.	Дата	
			по плану	по факту
M	Годуль. Показательные и логарифмические неравен	іства. (17	часов)	
1	Показательная функция и ее свойства. График.	1	01.09	
2	Показательные неравенства: однородные	1	08.09	
	показательные неравенства; неравенства,			
	сводящиеся к квадратным или к рациональным			
	неравенствам высших степеней.			
3	Неравенства, решаемые графическим методом.	1	15.09	
4	Логарифмическая функция: график и свойства функции. Связь показательной и логарифмической функций.	1	22.09	
5	Особенности решения логарифмических неравенств. Замена переменной в	1	29.09	
6	логарифмических неравенствах	1	06.10	
U	Решение логарифмических неравенств с переменным основанием.	1	00.10	
7	Методрационализации.	1	13.10	
•	Решение логарифмических неравенств	_	13.10	
	повышенного уровня сложности.			
8	Метод рационализации. Решение логарифмических неравенств повышенного уровня сложности.	1	20.10	
9	Использование свойств монотонности и непрерывности функций.	1	10.11	
10	Использование свойств чётности и нечётности функций.	1	17.11	
11	Использование свойств ограниченностифункции.	1	24.11	
12	Метод оценки левой и правой части неравенства.	1	01.12	
13	Решение комбинированных неравенств с использованием различных методов.	1	08.12	
14	Решение комбинированных неравенств с использованием различных методов.	1	15.12	
15	Решение систем неравенств.	1	22.12	
16	Комбинированные неравенства и системы неравенств. Обобщение.	1	12.01	
17	Зачет по модулю «Показательные и	1	19.01	
	логарифмические неравенства»			
	ь 3. Применение теории объемов к решению задач. ((17 часов)		
18	История изучения объемов тел. Метод неделимых	1	26.01	
19	Сущность метода площадей и метода объемов	1	02.02	
20	Объем прямоугольного параллелепипеда и объем пирамиды. Принцип подобия	1	09.02	
21	Основные формулы объемов многогранников: отношение объемов треугольных пирамид; объем	1	16.02	

	описанного многогранника; вычисление объема		
	тетраэдра через площади двух граней, двугранный		
	угол и ребро		
22	Вычисление объема треугольной призмы через площадь одной из боковых граней и расстояние от противоположного ребра до этой грани.	1	01.03
23	Зачёт по теории «Объём».	1	15.03
24	Примеры задач на применение метода объемов.	1	22.03
25	Рассмотрение примерных задач на применение изученных теорем.	1	05.04
26	Практикум по решению задач Применение теории объемов	1	12.04
27	Решение задач различной сложности.	1	19.04
28	Решение задач различной сложности.	1	
29	Самостоятельная работа.	1	26.04
30	Примеры стереометрических задач ЕГЭ прошлых лет, решение задач повышенной сложности. Подготовка к ЕГЭ.	1	03.05
31	Примеры стереометрических задач ЕГЭ прошлых лет, решение задач повышенной сложности. Подготовка к ЕГЭ.	1	17.05
32	Примеры стереометрических задач ЕГЭ прошлых лет, решение задач повышенной сложности. Подготовка к ЕГЭ.	1	
33-34	Итоговое тестирование за 2023-2024 учебный год. Анализ результатов и ошибок.	2	24.05
	Итого.	34	31
	L		